\
$\

al

-
Federal ¥
Planning Burea
Economic analyses a

nd forecasts

LIAM 2 User Guide
Release 0.6.0rc1

G. Bryon, G. Dekkers, G. de Menten

March 01, 2013

1 Introduction

1.1 AboutLIAM2
1.2 Aboutthisguide
1.3 Microsimulation
14 Credits s
2 Environment
2.1 LIAM2bundle
2.2 Getting Started Lo
23 Usingyourowndata

3 Model Definition

3.1 globals
32 entities i e e e e e e e e
33 simulation

4 Processes

4.1 Assignments
4.2 Temporary variables
43 Actions
44 Procedures
45 EXPressions e e
4.6 Output
4.7 Debugging and the interactive console
5 Links
5.1 manyZone
5.2 one2many e e

6 Importing data

6.1 datafiles
6.2 descriptionfile
6.3 importingthedata

7 Indices and tables

8 Appendix

8.1 Knownissues.,

8.2 Technicalchoices.

83 Changelog
Index

CONTENTS

— e e

........................ 13

29

........................ 29
........................ 30

33

........................ 33
........................ 33
........................ 36

39

41

........................ 41
........................ 42
........................ 43

55

CHAPTER
ONE

INTRODUCTION

LIAM 2 is a tool to develop (different kinds of) microsimulation models.

1.1 About LIAM2

The goal of the project is to let modellers concentrate on what is strictly specific to their model without having to
worry about the technical details. This is achieved by providing a generic microsimulation toolbox which is not
tied to a particular model. By making it available for free, our hope is to greatly reduce the development costs (in
terms of both time and money) of microsimulation models.

The toolbox is made as generic as possible so that it can be used to develop almost any microsimulation model as
long as it use cross-sectional ageing, ie all individuals are simulated at the same time for one period, then for the
next period, etc.

You can find the latest version of LIAM?2 and this documentation at: http://liam2.plan.be

1.2 About this guide

This guide will help you develop dynamic microsimulation models using LIAM 2. Please note that it describes
version 0.6 of LIAM 2, but both the software package and this manual are very much work-in-progress, and are
therefore subject to change, including in the syntax described in this manual for defining models.

1.3 Microsimulation

Microsimulation is (as defined by the International Microsimulation Association), a modelling technique that
operates at the level of individual units such as persons, households, vehicles or firms. Each unit has a set of
associated attributes — e.g. each person in the model has an associated age, sex, marital and employment status.
At each time step, a set of rules (intended to represent individual preferences and tendencies) are applied to these
units leading to simulated changes in state and possibly behaviour. These rules may be deterministic (probability
= 1), such as ageing, or stochastic (probability < 1), such as the chance of dying, marrying, giving birth or moving
within a given time period.

The aim of such simulations is to give insight about both the overall aggregate change of some characteristics and
(importantly) the way these changes are distributed in the population that is being modelled.

1.4 Credits

LIAM?2 is being developed at the Federal Planning Bureau (Belgium), with funding and testing by
CEPS/INSTEAD (Luxembourg) and IGSS (Luxembourg), and funding from the European Community. It is
the spiritual successor of LIAM 1, developed by Cathal O’Donoghue.

http://liam2.plan.be

LIAM 2 User Guide, Release 0.6.0rc1

More formally, it is part of the MiDaL project, supported by the European Community Programme for Em-
ployment and Social Solidarity - PROGRESS (2007-2013), under the Grant VS/2009/0569 Abstract - Project

PROGRESS MiDaL deliverable Work Package A.

2 Chapter 1. Introduction

CHAPTER
TWO

ENVIRONMENT

2.1 LIAM 2 bundle

The bundle includes:
* The executable.
* A text editor (Notepad++), pre-configured to work with LIAM2 models.

— Notepad++ is a free (and open source) text editor that 1is available at
http://sourceforge.net/projects/notepad-plus/.

— We pre-configured it so that you can import csv files and run your models directly from within the
editor by simply pressing F5 or F6 respectively. See below for more information.

* The documentation in html, pdf and chm (windows help) format.

* A demonstration model with a synthetic data set of 20,200 persons grouped in 14,700 households.

2.2 Getting Started

* Copy the contents of the bundle in a directory on your disk (let’s call it \localpath\).
* Run the “Notepad++Portable.exe” from the \localpath\Liam2Suite\editor directory.
* Open a model (eg. \localpath\Liam2Suite\examples\demoO1.yml)

* Press F6 to run the model. A console window will open within the editor and display the status of the
simulation. After the simulation completes, the console window becomes interactive.

* Use this console to explore the results.

2.3 Using your own data

* Prepare your data as CSV files. The first row should contain the name of the fields. You need at least two
integer columns: “id” and “period” (though they do not necessarily need to be named like that in the csv
file).

e Create an import file, as described in the Importing data section. You can use \local-
path\Liam2Suite\examples\demo_import.yml as an example.

* Press F5 to convert your CSV files to hdf5.

» Use the newly created data file with your model.

http://sourceforge.net/projects/notepad-plus/

LIAM 2 User Guide, Release 0.6.0rc1

4 Chapter 2. Environment

CHAPTER
THREE

MODEL DEFINITION

To define the model, we have to describe the different entities, their fields, the way they interact (links) and how
they behave over time (processes). This is done in one file. We use the YAML-markup language. This format uses
the level of indentation to specify objects and sub objects.

In a LIAM 2 model file, all text following a # is considered to be comments, and is therefore ignored.

A LIAM 2 model has the following structure:

globals:

entities:

simulation:

3.1 globals

The globals are variables (aka. parameters) that do not relate to any particular entity defined in the model. They
can be used in expressions across all entities.

Periodic globals can have a different value for each period. For example, the retirement age for women in Belgium
has been gradually increasing from 61 in 1997 via 63 from 2003 onward, up to 65 in 2009. A global variable
WEMRA has therefore been included.:

globals:
periodic:
- WEMRA: float

Periodic globals can be used in any process. They can be used in two ways: like a normal variable, they will
evaluate to their value for the period being simulated, for example

workstate: if (age >= WEMRA, 9, workstate)

This changes the workstate of the individual to retired (9) if the age is higher than the required retirement age in
that year.

Another way to use them is to specify explicitly for which period you want them to be evaluated. This is done by
using GLOBALNAME][period_expr]. periodexpr can be any expression yielding a valid period value. Here are a
few artificial examples:

workstate: if(age >= WEMRA[2010], 9, workstate)
workstate: if (age >= WEMRA([period - 1], 9, workstate)
workstate: if (age >= WEMRA[year_of birth + 60], 9, workstate)

LIAM 2 User Guide, Release 0.6.0rc1

3.2 entities

Each entity has a unique identifier and a set of attributes (fields). You can use different entities in one model. You
can define the interaction between members of the same entity (eg. between partners) or among different entities

(eg. a person and its household) using links.

The processes section describe how the entities behave. The order in which they are declared is not important.
In the simulation block you define if and when they have to be executed, this allows to simulate processes of

different entities in the order you want.

LIAM 2 declares the entities as follows:

entities:
entity-namel:
fields:
fields definition

links:
links definition

macros:
macros definition

processes:
processes definition

entity-name2:

As we use YAML as the description language, indentation and the use of ”:” are important.

3.2.1 fields

The fields hold the information of each member in the entity. That information is global in a run of the model.

Every process defined in that entity can use and change the value.
LIAM 2 handles three types of fields:

¢ bool: boolean (True or False)

* int: integer

* float: real number
There are two implicit fields that do not have to be defined:

* id: the unique identifier of the item

* period: the current period in the run of the program

example
entities:
person:
fields:

period and id are implicit
- age: int
- dead: bool
- gender: bool
1: single, 2: married, 3: cohabitant, divorced, 5: widowed
- civilstate: int
- partner_id: int
- earnings: float

6 Chapter 3. Model Definition

LIAM 2 User Guide, Release 0.6.0rc1

This example defines the entity person. Each person has an age, gender, is dead or not, has a civil state, possibly
a partner. We use the field civilstate to store the marital status as a switch of values.

By default, all declared fields are supposed to be present in the input file (because they are observed or computed
elsewhere and their value can be found in the supplied data set). The value for all declared fields will also be
stored for each period in the output file.

However, in practice, there are often some fields which are not present in the input file. They will need to be
calculated later by the model, and you need to tell LIAM?2 that the field is missing, by using “initialdata: false” in
the definition for that field (see the agegroup variable in the example below).

example
entities:
person:
fields:
- age: int
— agegroup: {type: int, initialdata: false}

Field names must be unique per entity (i.e. several entities may have a field with the same name).

3.2.2 links

Entities can be linked with each other or with other entities, for example, individuals belong to households, and
mothers are linked to their children, while partners are interlinked as well.

A typical link has the following form:

name: {type: <type>, target: <entity>, field: <name of link field>}

LIAM 2 uses integer fields to establish links between entities. Those integer fields contain the id-number of the
linked individual.

LIAM 2 allows two types of links: many2one and one2many.

More detail, see Links.

3.2.3 macros

Macros are a way to make the code easier to read and maintain. They are defined on the entity level. Macros are
re-evaluated wherever they appear. Use capital letters to define macros.

example
entities:
person:
fields:
- age: int
macros:
ISCHILD: age < 18
processes:
test_macros:
- ischild: age < 18
- beforel: if(ischild, 1, 2)
- before2: if(ISCHILD, 1, 2) # beforel == before2
- age: age + 1
- afterl: if(ischild, 1, 2)
- after2: if (ISCHILD, 1, 2) # afterl != after?2
simulation:

3.2. entities 7

LIAM 2 User Guide, Release 0.6.0rc1

processes:
— person: [test_macros]

The above example does

* ischild: creates a temporary variable ischild and sets it to True if the age of the person is under 18 and to
False if not

* beforel: creates a temporary variable beforel and sets it to 1 if the value of the temporary variable ischild
is True and to 2 if not.

* before2: creates a temporary variable before2 and sets it to 1 if the value age < 18 is True and to 2 if not

* age: the age is changed

* afterl: creates a temporary variable afterl and sets it to 1 if the value of the temporary variable ischild is
True and to 2 is not.

* after2: creates a temporary variable after2 and sets it to 1 if the value age < 18 is True and to 2 if not.

It is clear that afterl != after2 since the age has been changed and ischild has not been updated since.

3.2.4 processes

Here you define the processes you will need in the model.

More detail, see Processes.

3.3 simulation

The simulation block includes the location of the datasets (input, output), the number of periods and the start
period. It sets what processes defined in the entities block are simulated (since some can be omitted), and the
order in which this is done.

Suppose that we have a model that starts in 2002 and has to simulate for 10 periods. Furthermore, suppose that we
have two object or entities: individuals and households. The model starts by some initial processes (grouped under
the header inir) that precede the actual prospective simulation of the model, and that only apply to the observed
dataset in 2002. These initial simulations can pertain to the level of the individual or the household. Use the init
block to calculate variables for the starting period.

The prospective part of the model starts by a number of sub-processes setting the household size and composition.
Next, two processes apply on the level of the individual, changing the age and agegroup. Finally, mortality and
fertility are simulated. Seeing that this changes the numbers of individuals in households, the process establishing
the household size and composition is again used.

example
simulation:
init:
— household: [house composition]
— person: [agegroup]
processes:
— household: [household_composition]
- person: [
age, agegroup,
_procedure, birth
]
— household: [household composition]
input:
path: liam2 # optional

file: base.hb

8 Chapter 3. Model Definition

LIAM 2 User Guide, Release 0.6.0rc1

output:
path: liam2 # optional
file: simulation.h5
start_period: 2002
periods: 10
skip_shows: True #
random_seed: 5235 #
assertions: warn # optional
default_entity: person # optional

optional
optional

3.3.1 processes

This block defines which processes are executed and in what order. They will be executed for each period starting
from start_period for periods times. Since processes are defined on a specific entities (they change the values
of items of that entity), you have to specify the entity before each list of process. Note that you can execute the

same process more than once during a simulation and that you can alternate between entities in the simulation of
a period.

In the example you see that after dead_procedure and birth, the household_composition procedure is re-executed.

3.3.2 init

Every process specified here is only executed in the last period before start period (start_period - 1). You can use
it to calculate (initialise) variables derived from observed data. This section is optional (it can be entirely omitted).

3.3.3 input

The initial (observed) data is read from the file specified in the input entry.
Specifying the path is optional. If it is omitted, it defaults to the directory where the simulation file is located.

The hdf5-file format can be browsed with vitables (http://vitables.berlios.de/) or another hdf5-browser available
on the net.

3.3.4 output
The simulation result is stored in the file specified in the output entry. Only the variables defined at the entity level

are stored. Temporary (local) variables are not saved. The output file contains values for each period and each
field and each item.

Specifying the path is optional. If it is omitted, it defaults to the directory where the simulation file is located.

3.3.5 start_period

Defines the first period (integer) to be simulated.

3.3.6 periods

Defines the number of periods (integer) to be simulated.

3.3.7 random_seed

Defines the starting point (integer) of the pseudo-random generator. This section is optional. This can be useful if
you want to have several runs of a simulation use the same random numbers.

3.3. simulation 9

http://vitables.berlios.de/

LIAM 2 User Guide, Release 0.6.0rc1

3.3.8 skip_shows

If set to True, makes all show() functions do nothing. This can speed up simulations which include many shows

(usually for debugging).

3.3.9 assertions

This option can take any of the following values:
raise interrupt the simulation if an assertion fails (this is the default).
warn display a warning message.

skip do not run the assertions at all.

3.3.10 default_entity

If set to the name of an entity, the interactive console will start in that entity.

10

Chapter 3. Model Definition

CHAPTER
FOUR

PROCESSES

The processes are the core of a model. LIAM2 supports two kinds of processes: assignments, which change the
value of a variable (predictor) using an expression, and actions which don’t (but have other effects).

For each entity (for example, “household” and “person”), the block of processes starts with the header “pro-
cesses:”. Each process then starts at a new line with an indentation of four spaces.

4.1 Assignments

Assignments have the following general format:

processes:
variablel_name: expressionl
variable2_name: expression2

The variable_name will usually be one of the variables defined in the fields block of the entity but, as we will see
later, it is not always necessary.

In this case, the name of the process equals the name of the endogenous variable. Process names have to be
unique for each entity. See the section about procedures if you need to have several processes which modify the
same variable.

To run the processes, they have to be specified in the “processes” section of the simulation block of the file. This
explains why the process names have to be unique for each entity.

example
entities:
person:
fields:
- age: int
processes:
age: age + 1
simulation:
processes:

- person: [age]

4.2 Temporary variables

All fields declared in the “fields” section of the entity are stored in the output file. Often you need a variable only
to store an intermediate result during the computation of another variable.

In LIAM2, you can create a temporary variable at any point in the simulation by simply having an assignment to
an undeclared variable. Their value will be discarded at the end of the period.

11

LIAM 2 User Guide, Release 0.6.0rc1

example
person:
fields:
period and id are implicit
- age: int
- agegroup: int
processes:

age: age + 1

agedivl0: trunc(age / 10)
agegroup: agedivl10 * 10
agegroup2: agedivl1l0 * 5

In this example, agedivi10 and agegroup?2 are temporary variables. In this particular case, we could have bypassed
the temporary variable, but when a long expression occurs several times, it is often cleaner and more efficient to
express it (and compute it) only once by using a temporary variable.

4.3 Actions

Since actions don’t return any value, they do not need a variable to store that result, and they only ever need the
condensed form:

processes:
process_name: action expression

example

processes:
remove_deads: remove (dead)

4.4 Procedures

A process can consist of sub-processes, in that case we call it a procedure. Processes within a procedure are
executed in the order they are declared.

Sub-processes each start on a new line, again with an indentation of four spaces and a -.

So the general setup is:

processes:
variable_name: expression
process_name2: action_expression
process_name3:
— subprocess_31: expression
— subprocess_32: expression

In this example, there are three processes, of which the first two do not have sub-processes. The third process
is a procedure which consists of two sub-processes. If it is executed, subprocess_31 will be executed and then
subprocess_32.

Contrary to normal processes, sub-processes (processes inside procedures) names do not need to be unique. In the
above example, it is possible for subprocess_31 and subprocess_32 to have the same name, and hence simulate
the same variable. Procedure names (process_name3) does not directly refer to a specific endogenous variable.

example

processes:
ageing:
- age: age * 2 # in our world, people age strangely

12 Chapter 4. Processes

LIAM 2 User Guide, Release 0.6.0rc1

- age: age + 1
- agegroup: trunc(age / 10) = 10

The processes on age and agegroup are grouped in ageing. In the simulation block you specify the ageing-process
if you want to update age and agegroup.

By using procedures, you can actually make building blocks or modules in the model.

4.4.1 Temporary variables

Temporary variables defined/computed within a procedure are local to that procedure: they are only valid within
that procedure. If you want to pass variables between procedures you have to define them in the fields section.

(bad) example

person:
fields:
- age: int
processes:
ageing:
- age: age + 1
- isold: age >= 150 # isold is a local variable

rejuvenation:
- age: age - 1
- backfromoldage: isold and age < 150 # WRONG !

In this example, isold and backfromoldage are local variables. They can only be used in the procedure where they
are defined. Because we are trying to use the local variable isold in another procedure in this example, LIAM 2
will refuse to run, complaining that isold is not defined.

4.4.2 Actions

Actions inside procedures don’t even need a process name.

example

processes:
death_procedure:
- dead: age > 150
— remove (dead)

4.5 Expressions

4.5.1 Deterministic changes

Let us start with a simple increment; the following process increases the value of a variable by one each simulation
period.
age: age + 1

The name of the process is age and what it does is increasing the variable age of each individual by one, each
period.

simple expressions

* Arithmetic operators: +, -, *, /, ¥* (exponent), % (modulo)

4.5. Expressions 13

LIAM 2 User Guide, Release 0.6.0rc1

Note that an integer divided by an integer returns a float. For example “1 / 2 will evaluate to 0.5 instead of 0 as
in many programming languages. If you are only interested in the integer part of that result (for example, if you
know the result has no decimal part), you can use the frunc function:

agegroup5: 5 x trunc(age / 5)

* Comparison operators: <, <=, ==, |=, >=, >
* Boolean operators: and, or, not

Note that you have to use parentheses when you mix boolean operators with other operators.

inwork: (workstate > 0) and (workstate < 5)
to_give_birth: not gender and (age >= 15) and (age <= 50)

¢ Conditional expressions: if(condition, expression_if_true, expression_if_false)

example

agegroup_civilstate: if (age < 50,
5 % trunc(age / 5),
10 x trunc(age / 10))

Note that an if-statement has always three arguments. If you want to leave a variable unchanged if a condition is
not met, specify its value in the expression_if false

retire people (set workstate = 9) when aged 65 or more
workstate: if (age >= 65, 9, workstate)

You can nest if-statements. The example below retires men (gender = True) over 64 and women whose age equals
at least the parameter/periodic global “WEMRA” (Women Retirement Age).

workstate: if (gender,
if (age >= 65, 9, workstate),
if (age >= WEMRA, 9, workstate))

mathematical functions

¢ log(expr): natural logarithm (In)
* exp(expr): exponential
* abs(expr): absolute value

* round(expr[, n]): returns the rounded value of expr to specified n (number of digits after the decimal point).
If n is not specified, O is used.

* trunc(expr): returns the truncated value (by dropping the decimal part) of expr as an integer.
e clip(x, a, b): returns aif x <a,xifa<x<b,bif x >b.

¢ min(x, a), max(x, a): the minimum or maximum of X and a.

aggregate functions
* grpcount([condition]): count the objects in the entity. If filter is given, only count the ones satisfying
the filter.
* grpsum(expr], filter=condition]): sum the expression
» grpavg(expr][, filter=condition]): average
* grpstd(expr], filter=condition]): standard deviation
 grpmax(expr][, filter=condition]), grpmin(expr][, filter=condition]): max or min

» grpmedian(expr], filter=condition]): median

14 Chapter 4. Processes

LIAM 2 User Guide, Release 0.6.0rc1

* grppercentile(expr, percent[, filter=condition]): percentile
* grpgini(expr][, filter=condition]): gini

grpsum sums any expression over all the individuals of the current entity. For example grpsum(earnings) will
produce the sum of the earnings of all persons in the sample. The expression grpsum(nchO_11) will result in the
total number of children O to 11 in the sample.

grpcount counts the number of individuals in the current entity, optionally satisfying a (boolean) condition. For
example, grpcount(gender) will produce the total number of men in the sample. Contrary to grpsum, the grpcount
does not require an argument: grpcount() will return the total number of individuals in the sample.

Note that, grpsum and grpcount are exactly equivalent if their only argument is a boolean variable (eg. grp-
count(ISWIDOW) == grpsum(ISWIDOW)).

example

macros:
WIDOW: civilstate ==
processes:
cnt_widows: show (grpcount (WIDOW))

link functions

(one2many links)
¢ countlink(link[, filter])
* sumlink(link, expr][, filter])
e avglink(link, expr[, filter])

* minlink/maxlink(link, expr[, filter])

example
entities:
household:
fields:
period and id are implicit
— nb_persons: {type: int, initialdata: false}
links:
persons: {type: oneZ2many, target: person, field: household id}
processes:

household_composition:
- nb_persons: countlink (persons)
- nb_students: countlink (persons, workstate == 1)
- nch0_11: countlink (persons, age < 12)
- nchl2_15: countlink (persons, (age > 11) and (age < 16))

temporal functions

* lag: value at previous period

* value_for_period: value at specific period

¢ duration: number of consecutive period the expression was True
* tavg: average of an expression since the individual was created
 tsum: sum of an expression since the individual was created

If an item did not exist at that period, the returned value is -1 for a int-field, nan for a float or False for a boolean.
You can overide this behaviour when you specify the missing parameter.

4.5. Expressions 15

LIAM 2 User Guide, Release 0.6.0rc1

example

lag(age, missing=0) # the age each person had last year, 0 if newborn
grpavg (lag(age)) # average age that the current population had last year
lag (grpavg (age)) # average age of the population of last year

value_for_period(inwork and not male, 2002)

duration (inwork and (earnings > 2000))
duration (educationlevel == 4)

tavg (income)

random functions

¢ uniform: random numbers with a uniform distribution
e normal: random numbers with a normal distribution
e randint: random integers between bounds

example

a random variable with the stdev derived from errsal
normal (loc=0.0, scale=grpstd(errsal))
randint (0, 10)

4.5.2 Stochastic changes I: probabilistic simulation

choice

Monte Carlo or probabilistic simulation is a method for iteratively evaluating a deterministic model using sets
of random numbers as inputs. In microsimulation, the technique is used to simulate changes of state dependent
variables. Take the simplest example: suppose that we have an exogenous probability of an event happening,
P(x=1), or not P(x=0). Then draw a random number u from an uniform (0,1) distribution. If, for individual i,
ui<p(1), then xi=1. If not, then xi=0. The expected occurrences of x after, say, 100 runs is then P(x=1)*100 and
the expected value is 1xP(1)+0xP(0)=P(1). This type of simulation hinges on the confrontation between a random
variable and an exogenous probability. In the current version of LIAM 2, it is not possible to combine a choice
with alignment.

In LIAM 2, such a probabilistic simulation is called a choice process. Suppose i=1..n choice options, each with a
probability prob_option_i. The choice process then has the following form:

choice([option_1, option_2, ..., option_n],
[prob_option_1, prob_option_2, ..., prob_option_n])

Note that both lists of options and pertaining probabilities are between []’s. Also, the variable containing the
options can be of any numeric type.

A simple example of a choice process is the simulation of the gender of newborns (51% males and 49% females),
as such:

gender=choice ([True, False], [0.51, 0.49])

The code below illustrates a more complex example of a choice process (called collar process). Suppose we want
to simulate the work status (collar=1 (blue collar worker), white collar worker) for all working individuals. We
however have knowledge one’s level of education (education_level=2, 3, 4).

The process collar_process has collar as the key endogenous variable and has four sub-processes.

The first sub-process defines a local variable filter-bw, which will be used to separate those that the procedure
should apply to. These are all those that do not have a value for collar, and who are working, or who are in
education or unemployed, which means that they potentially could work.

16 Chapter 4. Processes

LIAM 2 User Guide, Release 0.6.0rc1

The next three “collar” sub-processes simulate whether one is a white or blue collar worker, depending on the
level of education. If one meets the above filter_bw and has the lowest educational attainment level, then one has
a probability of about 84% (men) and 69% (women) of being a blue collar worker. If one has ‘education_level’
equal to 3, the probability of being a blue collar worker is of course lower (64% for men and 31% for women), and
the probability of becoming a blue collar worker is lowest (8 and 4%, respectively) for those having the highest
educational attainment level.

collar_process: # working, in education, unemployed or other inactive
— filter_bw: (
((workstate > 0) and (workstate < 7))
or
(workstate == 10)
) and (collar == 0)
— collar: if(filter bw and (education_level == 2),

if (gender,
choice([1, 2], [0.83565, 0.16435]),

choice([1, 2], [0.68684, 0.31316])),
collar)
— collar: if(filter_bw and (education_level == 3),

if (gender,
choice([1, 2], [0.6427, 1 - 0.6427]),
choice([1, 2], [0.31278, 1 - 0.31278]1)),
collar)
— collar: if(filter_bw and (education_level == 4),
if (gender,
choice([1, 2], [0.0822, 1 - 0.0822]),
choice([1, 2], [0.0386, 1 - 0.0386])),
collar)

4.5.3 Stochastic changes ll: behavioural equations

 Logit:
— logit_regr(expr[, filter=None, align="filename’])
— logit_regr(expr[, filter=None, align=percentage])
* Alignment :
— align(expr][, take=take_filter, leave=leave_filter], fname="filename.csv’)

e Continuous (expr + normal(0, 1) * mult + error_var): cont_regr(expr[, filter=None, mult=0.0, er-
ror_var=None])

* Clipped continuous (always positive): clip_regr(expr[, filter=None, mult=0.0, error_var=None])
* Log continuous (exponential of continuous): log_regr(expr|, filter=None, mult=0.0, error_var=None])

example

divorce: logit_regr (0.6713593 % household.nchl2_15
- 0.0785202 % dur_in_couple
+ 0.1429621 % agediff,
filter=FEMALE and (civilstate == 2),
align='"al_p_divorce.csv’)

wage_earner: if((age > 15) and (age < 65) and inwork,
if (MALE,
align (wage_earner_score,
fname="al_p_wage_earner_m.csv’),
align (wage_earner_score,
fname='"al_p_wage_earner_f.csv’)),
False)

4.5. Expressions 17

LIAM 2 User Guide, Release 0.6.0rc1

logit_regr

Suppose that we have a logit regression that relates the probability of some event to explanatory variables X.
p*i=logit-1(BX + EPSi)

This probability consists of a deterministic element (as before), completed by a stochastic element, EPSi, a log-
normally distributed random variable. The condition for the event occurring is p*i > 0.5.

Instead, suppose that we want the proportional occurrences of the event to be equal to an overall proportion X. In
that case, the variable p*i sets the rank of individual i according to the risk that the relevant event will happen.
Then only the first X*N individuals in the ranking will experience the event. This process is known as ‘alignment’.

In case of one logit with one alignment process -or a logit without alignment-, logit_regr will result in the logit
returning a Boolean whether the event is simulated. In this case, the setup becomes:

- single_align: logit_regr (<logit arguments>,
[filter=<filter arguments>,
align="name.csv’])

example

birth:
- to_give_birth: logit_regr (0.0,
filter=FEMALE and
(age >= 15) and (age <= 50),
align="al_p_birth.csv’)

The above generic setup describes the situation where one logit pertains to one alignment process.

logit_score

In many cases, however, it is convenient to use multiple logits with the same alignment process. In this case, using
a logit_score instead of logit_regr will result in the logit returning intermediate scores that - for all conditions
together- are the inputs of the alignment process. A typical behavioural equation with alignment has the following
syntax:

name_process:
initialise the score to -1
- score_variable: -1

first condition

- score_variable: if (condition_1,
logit_score(logit_expr_1),
score_variable)

second condition

— score_variable: if (condition_2,
logit_score(logit_expr_2),
score_variable)

... other conditions

do alignment based on the scores calculated above
— name_endogenous_variable:
if (condition,
if (gender,
align (score_variable,
[take=conditions,]
[leave=conditions,]
fname=’ filename_m.csv’),
align (score_variable,
[take=conditions,]
[leave=conditions,]

18 Chapter 4. Processes

LIAM 2 User Guide, Release 0.6.0rc1

fname=’ filename_f.csv’)),
False)

The equation needs to simulate the variable name_endogenous_variable. It starts however by creating a score that
reflects the event risk p*i. In a first sub-process, a variable name_score is set equal to -1, because this makes it
highly unlikely that the event will happen to those not included in the conditions for which the logit is applied.
Next, subject to conditions condition_I and condition_2, this score is simulated on the basis of estimated logits.
The specification logit_score results in the logit not returning a Boolean but instead a score.

Note that by specifying the endogenous variable name_score without any transformations under the ‘ELSE’ con-
dition makes sure that the score variable is not manipulated by a sub-process it does not pertain to.

align

After this step, the score is known and this is the input for the alignment process. Suppose -as is mostly the case-
that alignment data exists for men and women separately. Then the alignment process starts by a if to gender.
Next comes the align command itself. This takes the form

align(score_variable,
filter=conditions,
[take=conditions,]
[leave=conditions,]
fname='name.csv’)

The file name.csv contains the alignment data. A standard setup is that the file starts with the prefix al_ followed
by the name of the endogenous variable and a suffix _m or _f, depending on gender.

The optional take and leave commands forces inclusion or exclusion of objects with specified characteristics in
the selection of the event. The individuals with variables specified in the take command will a priori be selected
for the event. Suppose that the alignment specifies that 10 individuals should experience a certain event, and that
there are 3 individuals who meet the conditions specified in the take. Then these 3 individuals will be selected
a priori and the alignment process will select the remaining 7 candidates from the rest of the sample. The leave
command works the other way around: those who match the condition in that statement, are a priori excluded
from the event happening. The fake and leave are absolute conditions, which mean that the individuals meeting
these conditions will always (take) or never (leave) experience the event.

Their soft counterparts can easily be included by manipulating the score of individuals. If this score is set to a
strong positive or negative number, then the individual will a priori have a high of low probability of the event
happening. These soft take and ‘soft leave’s will implement a priority order in the sample of individuals, but will
not under all circumstances conditionally include or exclude.

Note that even if the score is -1 an item can be selected by the alignment procedure. This happens when there are
not enough candidates (selected by the score) to meet the alignment needs.

The below application describes the process of being (or remaining) a wage-earner or employee. It illustrates a
soft leave by setting the a priori score variable wage_earner_score to -1. This makes sure that the a priori selection
probability for those not specified in the process is very low (but not zero, as in the case of leave conditions).

Next come three sub processes setting a couple of common conditions, in the form of local (temporary) vari-
ables. These three sub- processes are followed by six subsequent if conditions, separating the various behavioural
equations to the sub-sample they pertain to. The first three sub conditions pertain to women and describe the
probability of being a wage-earner from in work and employee previous year (1) from in work but not employee
previous year (2), and from not in work previous year (3). The conditions 4 to 6 describe the same transitions but
for women.

wage_earner_process:

- wage_earner_score: -1
- lag_public: lag((workstate == 2) or (workstate == 3))
— inwork: (workstate > 0) and (workstate < 5)

- lag_inwork: lag((workstate > 0) and (workstate < 5))
— men_inwork: gender and (age > 15) and (age < 65) and inwork

4.5. Expressions 19

LIAM 2 User Guide, Release 0.6.0rc1

=== MEN ===
Probability of being employee from in work and employee previous year
— wage_earner_score:

if (men_inwork and ((lag(workstate) == 1) or (lag(workstate) == 2)),
logit_score(0.0346714 % age + 0.9037688 * (collar == 1)
- 0.2366162 * (civilstate == 3) + 2.110479),

wage_earner_score)
Probability of becoming employee from in work but not employee
previous year
— wage_earner_score:

if (men_inwork and ((lag(workstate) != 1) and (lag(workstate) != 2)),
logit_score(-0.1846511 * age — 0.001445 x age =x%2
+ 0.4045586 * (collar == 1) + 0.913027),

wage_earner_score)
Probability of becoming employee from not in work previous year
— wage_earner_score:
if (men_inwork and (lag(workstate) > 4),
logit_score (-0.0485428 % age + 1.1236 * (collar == 1) + 2.761359),
wage_earner_score)

=== WOMEN ===
— women_inwork: not gender and (age > 15) and (age < 65) and inwork

Probability of being employee from in work and employee previous year
— wage_earner_score:
if (women_inwork and ((lag(workstate) ==
logit_score(-1.179012 % age + 0.03053
- 0.0002454 x age *%*3
- 0.3585987 % (collar == 1) + 17.91888),
wage_earner_score)
Probability of becoming employee from in work but not employee

) or (lag(workstate) == 2)),

1
89 * age %2

previous year
- wage_earner_score:

if (women_inwork and ((lag(workstate) != 1) and (lag(workstate) != 2)),
logit_score(-0.8362935 * age + 0.0189809 » age =*%*2
- 0.000152 x age **3 — 0.6167602 * (collar == 1)
+ 0.6092558 % (civilstate == 3) + 9.152145),

wage_earner_score)
Probability of becoming employee from not in work previous year
- wage_earner_score:
if (women_inwork and (lag(workstate) > 4),
logit_score(-0.6177936 % age + 0.0170716 % age **2
- 0.0001582 * agexx3 + 9.388913),
wage_earner_score)

- wage_earner: if((age > 15) and (age < 65) and inwork,
if (gender,
align (wage_earner_score,
fname='"al_p_wage_earner_m.csv’),
align (wage_earner_score,
fname="al_p_wage_earner_f.csv’)),
False)

The last sub-procedure describes the alignment process. Alignment is applied to individuals between the age
of 15 and 65 who are in work. The reason for this is that those who are not working obviously cannot
be working as a wage-earner. The input- files of the alignment process are ‘al_p_wage_earner_m.csv’ and
‘al_p_wage_earner_f.csv’. The alignment process sets the Boolean wage earner, and uses as input the scores
simulated previously, and the information it takes from the alignment files. No ‘take’ or ‘leave’ conditions are
specified in this case.

Note that the population to align is the population specified in the first condition, here (age>15) and (age<65) and
(inwork) and not the whole population.

20 Chapter 4. Processes

LIAM 2 User Guide, Release 0.6.0rc1

4.5.4 Lifecycle functions

new

new creates items initiated from another item of the same entity (eg. a women gives birth) or another entity (eg. a
marriage creates a new houshold).

generic format

new ('entity_name’, filter=expr,
*set initial values of a selection of variablesx)

The first parameter defines the entity in which the item will be created (eg person, household, ...).

Then, the filter argument specifies which items of the current entity will serve as the origin for the new items (for
persons, that would translate to who is giving birth, but the function can of course be used for any kind of entity).

Any subsequent argument specifies values for fields of the new individuals. Any field which is not specified there
will receive the missing value corresponding to the type of the field (‘nan’ for floats, -1 for integers and False for
booleans). Those extra arguments can be given constants, but also any expression (possibly using links, random
functions, ...). Those expressions are evaluated in the context of the origin individuals. For example, you could
write “mother_age = age”, which would set the field “mother_age” on the new item to the age of their mother.

example 1

birth:
- to_give_birth: logit_regr (0.0,
filter=not gender and
(age >= 15) and (age <= 50),
align="al_p_birth.csv’)
— new (’person’, filter=to_give_birth,
mother_id = id,
father_id = partner.id,
household_id = household_id,

partner_id = -1,

age = 0,

civilstate = 1,
collar = 0,
education_level = -1,
workstate = 5,

gender=choice ([True, False], [0.51, 0.49]))

The first sub-process (to_give_birth) is a logit regression over women (not gender) between 15 and 50 which
returns a boolean value whether that person should give birth or not. The logit itself does not have a deterministic
part (0.0), which means that the ‘fertility rank’ of women that meet the above condition, is only determined by a
logistic stochastic variable). This process is also aligned on the data in ‘al_p_birth.csv’.

In the above case, a new person is created for each time a woman is scheduled to give birth. Secondly, a number
of links are established: the value for the mother_id field of the child is set to the id-number of his/her mother,
the child receives the household number of his/her mother, the child’s father is set to the partner of the mother,
... Finally some variables of the child are set to specific initial values: the most important of these is its gender,
which is the result of a simple choice process.

new is not limited to items of the same entity; the below procedure get a life makes sure that all those who are
single when they are 24 year old, leave their parents’ household for their own household. The region of this
household is created through a simple choice-process.

example 2
get_a_life:
- household_id:
if ((age == 24) and (civilstate != 2) and (civilstate != 3),

new (" household’,
start_period=period,
region_id=choice ([0, 1, 2, 3], [0.1, 0.2, 0.3, 0.4])

4.5. Expressions 21

LIAM 2 User Guide, Release 0.6.0rc1

) s
household_id)

clone

clone is very similar to new but is intended for cases where most or all variables describing the new individual
should be copied from his/its parent/origin instead of being set to “missing”. With clone, you cannot specify what
kind of entity you want to create, as it is always the same as the origin item. However, similarly to new, clone
also allows fields to be specified manually by any expression evaluated on the parent/origin.

Put differently, a new with no fields mentioned will result in a new item of which the initial values of the fields are
all set to missing and have to be filled through simulation; on the contrary, a clone with no fields mentioned will
result in a new item that is an exact copy of the origin except for its id number which is always set automatically.

example

make_twins:
— clone(filter=new_born and is_twin,
gender=choice ([True, False], [0.51, 0.49]))

remove

remove removes items from an entity dataset. With this command you can remove obsolete items (eg. dead
persons, empty households) thereby ensuring they are not simulated anymore. This will also save some memory
and, in some cases, improve simulation speed.

The procedure below simulates whether an individual survives or not, and what happens in the latter case.

dead_procedure:

decide who dies

- dead: if (gender,
logit_regr (0.0, align=’"al_p_dead_m.csv’),
logit_regr (0.0, align=’"al_p_dead_f.csv’))

change the civilstate of the suriving partner

- civilstate: if (partner.dead, 5, civilstate)

break the link to the dead partner

- partner_id: if (partner.dead, -1, partner_id)

remove the dead

- remove (dead)

The first sub-procedure dead simulates whether an individual is ‘scheduled for death’, using again only a logistic
stochastic variable and the age-gender-specific alignment process. Next some links are updated for the surviving
partner. The sub-procedure civilstate puts the variable of that name equal to 5 (which means that one is a widow(er)
for those individuals whose partner has been scheduled for death. Also, in that case, the partner identification
code is erased. All other procedures describing the heritage process should be included here. Finally, the remove
command is called to removes the dead from the simulation dataset.

4.5.5 Matching functions

matching: (aka Marriage market) matches individuals from set 1 with individuals from set 2. For each individual
in set 1 following a particular order (given by the expression in the orderby argument), the function computes the
score of all (unmatched) individuals in set 2 and take the best scoring one.

You have to specify the boolean filters which provide the two sets to match (setlfilter and set2filter), the criterion
to decide in which order the individuals of the first set are matched and the expression that will be used to assign
a score to each individual of the second set (given a particular individual in set 1).

In the score expression the fields of the set 1 individual can be used normally and the fields of its possible partners
can be used by prefixing them by “other.”.

22 Chapter 4. Processes

LIAM 2 User Guide, Release 0.6.0rc1

generic setup

matching (setlfilter=boolean_expr,
set2filter=boolean_expr,
orderby=difficult_match,
score=coefl x fieldl + coef2 % other.field2 + ...)

The generic setup of the marriage market is simple; one needs to have selected those individuals who are to be
coupled (to_couple*=true). Furthermore, one needs to have a variable (*difficult_match) which can be used to
rank individuals according how easy they are to match. Finally, we need a function (score) matching potential
partners.

In the first step, and for those persons that are selected to be coupled, potential partners are matched in the order
set by difficult_match and each woman is matched with the potential partner with the highest matching score.
Once this is done, both individuals become actual partners and the partner identification numbers are set so that
the partner number of each person equals the identification number of the partner.

example

marriage:
— in_couple: MARRIED or COHAB
- to_couple: if((age >= 18) and (age <= 90) and not in_couple,
if (MALE,
logit_regr (0.0, align=’"al_p_mmkt_m.csv’),
logit_regr (0.0, align=’"al_ p_mmkt_f.csv’)),
False)
- avg_age_males_to_couple: grpavg(age, filter=to_couple and MALE)
— difficult_match: if(to_couple and FEMALE,

abs (age - avg_age_males_to_couple),
nan)
— work: (workstate > 0) and (workstate < 5)

- partner_id: if (to_couple,
matching (setlfilter=FEMALE, set2filter=MALE,
orderby=difficult_match,
score=— 0.4893 x other.age

+ 0.0131 % other.age x*x% 2

- 0.0001 % other.age %% 3

+ 0.0467 % (other.age - age)

- 0.0189 % (other.age - age) xx 2

+ 0.0003 * (other.age - age) xx 3

- 0.9087 % (other.work and not work)
- 1.3286 % (not other.work and work)
- 0.6549 % (other.work and work)),

partner_id)
— coupled: to_couple and (partner_id != -1)
— newhousehold: new(’household’, filter=coupled and FEMALE,
start_period=period,
region_id=choice ([0, 1, 2, 31,
[0.1, 0.2, 0.3, 0.41))
- household_id: if (coupled,
if (MALE, partner.newhousehold, newhousehold),
household_id)

The code above shows an application. First of all, individuals eligible for marriage are all those between 18 and
90 who are not a part of a couple; the actual decision who is eligible is left to the alignment process. Next, for
every women eligible to coupling, the variable difficult_match is the difference between her age and the average
age of men eligible for coupling.

In a third step, for each eligible woman in turn (following the order set by difficult_match), all eligited men are
assigned a score and the man with the best score is matched with that woman. This score depends on his age, his
difference in age with the woman and the the work status of the potential partners.

In a next step, a new household is created for women who have just become a part of a couple. Their household
number, as well as their new partners is then updated to reflect their new household.

4.5. Expressions 23

LIAM 2 User Guide, Release 0.6.0rc1

4.6 Output

LIAM 2 produces simulation output in three ways. First of all, by default, the simulated datasets are stored in hdf5
format. These can be accessed at the end of the run. You can use several tools to inspect the data.

You can display information during the simulation using show or groupby. You can dump data to csv-file for
further study.

If you run LIAM 2 in interactive mode, you can type in output functions in the console to inspect the data.

4.6.1 show

show evaluates expressions and prints the result to the console.

show (exprl[, expr2, expr3, ...])

example 1

show (grpcount (age >= 18))
show (grpcount (not dead), grpavg(age, filter=not dead))

The first process will print out the number of persons of age 18 and older in the dataset. The second one displays
the number of living people and their average age.

example 2

show ("Count:", grpcount(),
"Average age:", grpavg(age),
"Age std dev:", grpstd(age))

gives

Count: 19944 Average age: 42.7496991576 Age std dev: 21.9815913417

Note that you can use the special character “n” to display the rest of the result on the next line.

example 3

show ("Count:", grpcount (),
"\nAverage age:", grpavg (age),
"\nAge std dev:", grpstd(age))

gives
Count: 19944

Average age: 42.7496991576
Age std dev: 21.9815913417

4.6.2 csv

The csv function writes values to (a) csv-file(s).
csv(exprl[, expr2, expr3, ..., [suffix="file_suffix’][, fname="filename’][, mode="w’])

‘suffix’, ‘fname’ and ‘mode’ are optional arguments. By default (if neither ‘fname’ nor ‘suffix’ is used), the name
of the csv file is generated using the following pattern: “{entity}_{period}.csv”.

example

csv (grpavg (income))

24 Chapter 4. Processes

LIAM 2 User Guide, Release 0.6.0rc1

will create one file for each simulated period. Assuming, start_period is 2002 and periods is 2, it will create two
files: “person_2002.csv” and “person_2003.csv” with the average income of the population for period 2002 and
2003 respectively.

Arguments:

 ‘suffix’ allows to customize the name of the files easily. When it is used, the files are named using the
following pattern: “{entity}_{period}_{suffix}.csv”.

example

csv (grpavg (income), suffix=’"income’)

would create “person_2002_income.csv” and “person_2003_income.csv’.

* ‘fname’ allows defining the exact file name or pattern to use. You can optionally use the ‘{entity}’ and
‘{period}’ key words to customize the name.

example

csv (grpavg (income), fname=’income{period}.csv’)

would create “income2002.csv” and “income2003.csv”.

* ‘mode’ allows appending (mode="a’) to a csv file instead of overwriting it (mode="w’ by default). This
allows you, for example, to store the value of some expression for all periods in the same file (instead of
one file per period by default).

example

csv (period, grpavg(income), fname=’avg_income.csv’, mode=’'a’)

Note that unless you erase/overwrite the file one way or another between two runs of a simulation, you
will append the data of the current simulation to that of the previous one. One way to do overwrite the file
automatically at the start of a simulation is to have a procedure in the init section without mode="a’.

If you want that file to start empty, you can do so this way:

csv (fname=’avg_income.csv’)

If you want some headers in your file, you could write them at that point:

csv ('period’, ’'average income’, fname=’avg_income.csv’)

When you use the csv() function in combination with (at least one) table expressions (see dump and groupby
functions below), the results are appended below each other.

csv(table_exprl, ‘and here goes another table’, table_expr2, fname="tables.csv’)

Will produce a file with a layout like this:

| table 1 value at row 1, col 1 |
| e |
| row N, col 1 |
| and here goes another table |
| \
| \
| \

table 2 value at row 1, col 1

row N, col 1

You can also output several rows with a single command by enclosing values between brackets:

csv ([rowlvaluel, ..., rowlvalueN],

[rowNvaluel, ..., rowNvalueN],
fname=’' several_rows.csv’)

example

4.6. Output 25

LIAM 2 User Guide, Release 0.6.0rc1

csv([’this is’, ’"a header’],
["with’, ’several lines’],
fname='person_age_aggregates.csv’)

Will produce a file with a layout like this:

| this is | a header |
| with | several lines |
4.6.3 dump

dump produces a table with the expressions given as argument evaluated over many (possibly all) individuals of
the dataset.

general format
dump([exprl, expr2, ..., filter=filterexpression, missing=value, header=True])

If no expression is given, all fields of the current entity will be dumped (including temporary variables available
at that point), otherwise, each expression will be evaluated on the objects which satisfy the filter and produce a
table.

The “filter’ argument allows to evaluate the expressions only on the individuals which satisfy the filter. Defaults
to None (evaluate on all individuals).

The ‘missing’ argument can be used to transform ‘nan’ values to another value. Defaults to None (no transforma-
tion).

The ‘header’ argument determine whether column names should be in the dump or not. Defaults to True.

example

show (dump (age, partner.age, gender, filter=id < 10))

gives

id | age | partner.age | gender
o1 27 | -1 | False
1] 86 | 71 | False
2 | 16 | -1 | True
31 19 | -1 | False
4 | 27 | 21 | False
5 89 | 92 | True
6 | 59 | 61 | True
7 | 65 | 29 | False
8 | 38 | 35 | True
9 | 48 | 52 | True

4.6.4 groupby

groupby (aka pivot table): group all individuals by their value for the given expressions, and optionally compute
an expression for each group. If no expression is given, it will compute the number of individuals in that group.
A filter can be specified to limit the individuals taken into account.

general format

groupby (exprl[, expr2, expr3, ...] [, expr=expression]
[, filter=filterexpression] [, percent=True])

example

show (groupby (age / 10, gender))

26 Chapter 4. Processes

LIAM 2 User Guide, Release 0.6.0rc1

gives
gender | False | True |
(age / 10) | | | total
0 | 818 | 803 | 1621
1| 800 | 800 | 1600
2 | 1199 | 1197 | 2396
3 | 1598 | 1598 | 3196
4 | 1697 | 1696 | 3393
5 | 1496 | 1491 | 2987
6 | 1191 | 1182 | 2373
7 684 | 671 | 1355
8 | 369 | 357 | 726
9 | 150 | 147 | 297
total | 10002 | 9942 | 19944
example
show (groupby (inwork, gender))
gives
gender | False | True |
inwork | | | total
False | 6170 | 5587 | 11757
True | 3832 | 4355 | 8187
total | 10002 | 9942 | 19944
example

show (groupby (inwork, gender, percent=True))

gives
gender | False | True |
inwork | | | total
False | 30.94 | 28.01 | 58.95
True | 19.21 | 21.84 | 41.05
total | 50.15 | 49.85 | 100.00
example

groupby (workstate, gender, expr=grpavg(age))

gives the average age by workstate and gender

gender | False | True |
workstate | | | total
1 | 41.29 | 40.53 | 40.88
2 | 40.28 | 44.51 | 41.88
3 8.32 | 7.70 | 8.02
4 | 72.48 | T72.27 | 72.38
5 | 42.35 | 46.56 | 43.48
total | 42.67 | 42.38 | 42.53

4.7 Debugging and the interactive console

LIAM 2 features an interactive console which allows you to interactively explore the state of the memory either
during or after a simulation completed.

@ 9

You can reach it in two ways. You can either pass “-i” as the last argument when running the executable, in which
case the interactive console will launch after the whole simulation is over. The alternative is to use breakpoints in
your simulation to interrupt the simulation at a specific point (see below).

4.7. Debugging and the interactive console 27

LIAM 2 User Guide, Release 0.6.0rc1

Type “help” in the console for the list of available commands. In addition to those commands, you can type any
expression that is allowed in the simulation file and have the result directly. Show is implicit for all operations.

examples

>>> grpavg (age)
53.7131819615

>>> groupby (age / 20, gender, expr=grpcount (inwork))

gender | False | True |
(age / 20) | | | total
0 | 14 | 18 | 32
1] 317 | 496 | 813
2 | 318 | 258 | 576
3 | 40 | 102 | 142
4 | 0 | 0 | 0
5 | 0 | 0 | 0
total | 689 | 874 | 1563

4.7.1 breakpoint

breakpoint: temporarily stops execution of the simulation and launch the interactive console. There are two
additional commands available in the interactive console when you reach it through a breakpoint: “step” to execute
(only) the next process and “resume” to resume normal execution.

general format
breakpoint([period])

the “period” argument is optional and if given, will make the breakpoint interrupt the simulation only
for that period.

example

marriage:
— in_couple: MARRIED or COHAB
- breakpoint (2002)

4.7.2 assertions
Assertions can be used to check that your model really produce the results it should produce. The behavior when
an assertion fails is determined by the assertions simulation option.

* assertTrue(expr): evaluates the expression and check its result is True.

* assertEqual(exprl, expr2): evaluates both expressions and check their results are equal.

28 Chapter 4. Processes

CHAPTER
FIVE

LINKS

Entities can be linked with each other or with other entities, for example, individuals belong to households, and
mothers are linked to their children, while partners are interlinked as well.

A typical link has the following form:

name: {type: <type>, target: <entity>, field: <name of link field>}

LIAM 2 uses integer fields to establish the link between entities. Those integer fields contain the id-number of the
linked individual.

LIAM 2 allows two types of links: many2one and one2many.

5.1 many2one

A many2one link the item of the entity to one other item in the same (eg. a person to its mother) or another entity
(eg. a person to its household).

This allows the modeller to use information stored in the linked entities.

entities:
person:

fields:
- age: int
— income: float
- mother_id: int
- father_id: int
- partner_id: int

links:
mother: {type: many2
father: {type: many2 =) >
partner: {type: many2one, target: person, field: partner_id}

processes:

age: age + 1
mother_age: mother.age
parents_income: mother.income + father.income

To access a field of a linked individual (possibly of the same entity), you use:

link_name.field_name

For example, the mother_age process uses the ‘mother’ link to assign the age of the mother to the mother_age
field. If an individual’s link does not point to anything (eg. a person has no known mother), trying to use the link
would yield the missing value (eg. for orphans, mother.age is -1 and parents_income is nan).

As another example, the process below sets a variable to_separate to True if the variable separate is True for either
the individual or his/her partner.

29

LIAM 2 User Guide, Release 0.6.0rc1

‘— to_separate: separate or partner.separate

Note that it is perfectly valid to chain links as, for example, in:

grand_parents_income: mother.mother.income + mother.father.income +
father.mother.income + father.father.income

Another option to get values in the linked individual is to use the form:

link_name.get (expr)

this syntax is a bit more verbose in the simple case, but is much more powerful as it allows to evaluate (almost)
any expression on the linked individual.

For example, if you want to get the average age of both parents of the mother of each individual, you can do it so:

mother.get((mother.age + father.age) / 2)

5.2 one2many

A one2many links an item in an entity to at least one other item in the same (eg. a person to its children) or other
entity (a household to its members).

entities:
household:
links:

persons: {type: oneZ2many, target: pe ield: household_id}

person:
fields:
- age: int
- income: float
— household_id : int

links:
household: {type: many2one, target: household, field: household_ id}

e persons is the link from the household to its members.
* household is the link form a person to the household.
To use information stored in the linked entities you have to use aggregate functions
* countlink (eg. countlink(persons) gives the numbers of persons in the household)
¢ sumlink (eg. sumlink(persons, income) sums up all incomes from the members in a household)
* avglink (eg. avglink(persons, age) gives the average age of the members in a household)
» minlink, maxlink (eg. minlink(persons, age) gives the age of the youngest member of the household)

example

entities:
household:
fields:
— num_children: int

links:

link from a household to its members

persons: {type: oneZmany, target: person, field: household_id}
processes:

num_children: countlink (persons, age < 18)

30 Chapter 5. Links

LIAM 2 User Guide, Release 0.6.0rc1

person:

fields:

- age: int

— household_id: int
links:

link form a person to his/her household

household: {type: many2one, targe

field: household_id}

processes:

num_kids_in_hh: household.num_children

The num_children process, once called will compute the number of persons aged 17 or less in each household and
store the result in the num_children field (of the household). Afterwards, that variable can be used like any other
variable, for example through a many2one link, like in the num_kids_in_hh process. This process computes for

each person, the number of children in the household of that person.

Note that the variable num_kids_in_hh could also have been simulated by just one process, on the “person” level,

by using:

— num_kids_in_hh: household.get (countlink (persons,

age < 18))

5.2. one2many

31

LIAM 2 User Guide, Release 0.6.0rc1

32

Chapter 5. Links

CHAPTER
SIX

IMPORTING DATA

6.1 data files

As of now, you can only import CSV files, one file for each entity. Their first row should contain the name of the
fields. You need at least two integer columns: “id” and “period” (though they do not necessarily need to be named
like that in the csv file).

6.2 description file

To import CSV files, you need to create a description file. Those description files have the following general
format:

output: <path_of_ hdf5_file>.csv

compression is optional. compression type can be ’zlib’, ’'bzip2’ or ’'lzo’
level is a digit from 1 to 9 and is optional (defaults to 5).

Examples of valid compression strings are: zlib, lzo-1, bzip2-9.

You should experiment to see which compression scheme (if any) offers the
best trade-off for your dataset.

compression: <type>-<level>

globals:
periodic:

path: <path_of_globals_file>.csv
if the csv file is transposed (each field is on a row instead of a
column and the field names are in the first column, instead of the
first row), you can use "transpose: true". You do not need to
specify anything if the file is not transposed.
transposed: true

entities:
<entityl_name>:
path: <path_to_entityl_ data>.csv

defaults to false if not present
transposed: true

if you want to manually select the fields to be used, and/or
specify their types, you can do so in the following section.
If you want to use all the fields present in the csv file, you
can simply omit this section. The field types will be
automatically detected.

fields:

period and id are implicit

— <fieldl_name>: <fieldl_type>

- <field2_name>: <field2_type>

HH= =

33

LIAM 2 User Guide, Release 0.6.0rc1

if you want to keep your csv files intact but use different
names in your simulation than in the csv files, you can specify
name changes here.
oldnames:
<fieldX_newname>: <fieldX_oldname>
<fieldY newname>: <fieldY_oldname>

another option to specify name changes (takes precedence over
oldnames in case of conflicts).
newnames:

<fieldX_ oldname>: <fieldX_newname>

<fieldY_ oldname>: <fieldY_newname>

if you want to merge several files, use this format:
files:
- <path>\<to>\<filel>.<ext>:
any option (renamings, ...) specified here will override
the corresponding options defined at the level of the
entity
transposed: truel|false
newnames:
<fieldX_ oldname>: <fieldX_ newname>
<fieldY_oldname>: <field¥Y_newname>

1f you don’t have any specific option for a file, use "{}"
- <path>\<to>\<file2>.<ext>: {}

OR, if all the files use the global options (the options defined
at the level of the entity):
files:

- <path>\<to>\<filel>.<ext>

- <path>\<to>\<file2>.<ext>

if you want to fill missing values for some fields (this only
works when "files" is used).
interpolate:

<fieldX_name>: previous_value

if you want to invert the value of some boolean fields

(True —-> False and False -> True), add them to the "invert" list
below.

invert: [list, of, boolean, fields, to, invert]

<entity2_name>:

Most elements of this description file are optional. The only required elements are “output” and “entities”. If an
element is not specified, it uses the following default value:

* if path is omitted, it defaults to a file named after the entity in the same directory than the description file (ie
local_path\name_of _the_entity.csv).

« if the fields section is omitted, all columns of the csv file will be imported and their type will be detected
automatically.

* if compression is omitted, the output will not be compressed.

Note that if an “entity section” is entirely empty, you need to use the special code: “{}”.

34 Chapter 6. Importing data

LIAM 2 User Guide, Release 0.6.0rc1

simplest example

output: simplest.hb

entities:
household: {}
person: {}

This will try to load all the fields of the household and person entities in “household.csv” and “person.csv” in the
same directory than the description file.

simple example

output: simple.h5

globals:
periodic:
path: input\globals.csv

entities:
household:
path: input\household.csv

person:
path: input\person.csv

This will try to load all the fields of the household and person entities in “household.csv” and “person.csv” in the
“input” sub-directory of the directory where the description file is.

example 3

output: example3.hb5

globals:
periodic:
path: input\globals_transposed.csv
transposed: true

entities:
household:
path: input\household.csv

person:
path: input\person.csv
fields:
- age: int
— gender: bool
- workstate: int
- civilstate: int
- partner_id: int
oldnames:

gender: male

This will load all the fields of the household entity in “household.csv” and load from “person.csv’” only the fields
listed above. The data will be converted (if necessary) to the type declared. In this case, person.csv should
contain at least the following columns (not necessarily in this order): period, id, age, male, workstate, civilstate,
partner_id.

If the fields of an entity are scattered in several files, you can use the “files” key to list them, as in example 4

output: exampled.hb5

entities:
person:

6.2. description file 35

LIAM 2 User Guide, Release 0.6.0rc1

fields:
- age: int
- gender: bool
- workstate: int

- civilstate: int

renamings applying to all files of this entity
newnames:
time: period

files:
- param\p_age.txt:
additional renamings for this file only
newnames:
value: age
- param\p_workstate.txt:
newnames :
value: workstate
person.csv should have at least 4 columns:
period, i1d, age and gender
- param\person.csv:

S

newnames:
we override the "global" renaming
period: period

interpolate:
workstate: previous_value
civilstate: previous_value

But this can become tedious if you have a lot of files to import and they all have the same column names. If the
name of the field can be extracted from the name of the file, you can automate the process like this:

example 5

output: example5.hb

entities:
person:

fields:
- age: int
- work: bool

newnames :
time: period
{basename} evaluates to the name of the file without
extension. In the examples below, that would be
'p_age’ and 'p_work’. We then use the "replace" method
on the string we got, to get rid of 'p_’'.
value: eval (’ {basename}’ .replace('p_", "))

files:
- param\p_age.txt
- param\p_work.txt

interpolate:

work: previous_value

6.3 importing the data

Once you have your data as CSV files and created a description file, you can import your data.

36 Chapter 6. Importing data

LIAM 2 User Guide, Release 0.6.0rc1

* If you are using the bundled editor, simply open the description file and press F5.

* If you are using the command line, use:

liam2 import <path_to_description_file>

6.3. importing the data 37

LIAM 2 User Guide, Release 0.6.0rc1

38

Chapter 6. Importing data

CHAPTER
SEVEN

INDICES AND TABLES

39

LIAM 2 User Guide, Release 0.6.0rc1

40

Chapter 7. Indices and tables

CHAPTER
EIGHT

APPENDIX

8.1 Known issues

8.1.1 Contextual filter is inconsistent

First, what is a contextual filter? It is the name we gave to the feature which propagates the filter of an if function
to the “True” side of the function, and the opposite filter to the “False” side. So, for example, in:

- aligned: if (gender, align (0.0, fname=’'al_p_dead_m.csv’)
align (0.0, fname="al_p_dead_f.csv’))

the “gender” filter is automatically propagated to the align functions. Which means, the above code is exactly
equivalent to:

— aligned_m: align (0.0, filter=gender, fname=’al_p_dead m.csv’)
- aligned_f: align(0.0, filter=not gender, fname=’'al_p_dead_f.csv’)
- aligned: if (gender, aligned_m, aligned_f)

One might wonder what happens if an explicit filter is used in addition to the contextual filter? Both filters are
combined (using “and”), as for example:

— aligned: if(gender, align (0.0, fname='al_ p_dead_m.csv’, filter=age > 10)
align (0.0, fname='al_p_dead_f.csv’))

which is in fact evaluated as:

— aligned_m: align (0.0, filter=gender and age > 10, fname=’'al_p_dead_m.csv’)
- aligned_f: align (0.0, filter=not gender, fname=’'al_p_dead_f.csv’)
— aligned: if (gender, aligned_m, aligned_f)

What is the inconsistency anyway?

This contextual filter propagation is implemented for new(), align(), logit_regr(), matching() and some (but not all)
aggregate functions. Specifically, it is implemented for grpsum and grpgini, but not for other aggregate functions
(grpcount, grpavg, grpmin, grpmax, grpstd, grpmedian and grppercentile). This situation needs to be changed, but
I am unsure in which way: implementing it for all aggregate functions or not contextutal filter for any aggregate
function (or any function at all)?

While this features feels natural for new, align and logit_regr, it feels out of place for aggregate functions because
it means we work at both the individual level and at the “aggregate” levels in the same expression, or, in more
technical terms, we work with both vectors and scalars, and it might be confusing: do users realize they are
assigning a value for each individual, even if that is only one of two values?

In an expression like the following:

- age_sum: if (gender, grpsum(age), grpsum(age))

41

LIAM 2 User Guide, Release 0.6.0rc1

do users realize they are assigning a different value for both branches? When I see an expression like this, I think:
“it returns the same value whether the condition is True or not, let’s simplify it by removing the condition”:

‘— age_sum: grpsum(age)

which will not have the same result.

Another (smaller) point, is that implementing this contextual filter feature means one cannot “escape’ the filter of
an if function, so for example:

— difficult_match: if (to_marry and not gender,
abs (age - grpavg(age, filter=to_marry and gender)),
nan)

would not work, and would need to be rewritten as:

- avg_age_men: grpavg(age, filter=to_marry and gender)
— difficult_match: if (to_marry and not gender,

abs (age - avg_age_men),

nan)

I would greatly appreciate more input on the subject, so please make your voice heard if you have an opinion
about this, [on the -dev mailing list].

8.1.2 31 different variables per expression

Within a single expression, one may only use 31 different variables. There is a simple workaround though: split
your expression in several pieces, each one using less than 31 variables. Example:

‘— result: al + a2 + ... + a3l + a32 + a33

could be rewritten as:

- tmp: al + a2 + ... + a3l
— result: tmp + a32 + a33

8.2 Technical choices

8.2.1 Python

We use the Python language (http://www.python.org/) for the development of LIAM 2.

Python runs on Windows, Linux/Unix, Mac OS X, and has been ported to the Java and .NET virtual
machines.

Python is free to use, even for commercial products, because of its OSI-approved open source license.

8.2.2 HDF5

We store the used data in an hdf5-format (http://www.hdfgroup.org).

HDFS5 is a data model, library, and file format for storing and managing data. It supports an unlimited
variety of data types, and is designed for flexible and efficient I/O and for high volume and complex
data. HDFS is portable and is extensible, allowing applications to evolve in their use of HDF5. The
HDFS5 Technology suite includes tools and applications for managing, manipulating, viewing, and
analyzing data in the HDF5 format.

HDF is open-source and the software is distributed at no cost. Potential users can evaluate HDF
without any financial investment. Projects that adopt HDF are assured that the technology they rely

42 Chapter 8. Appendix

http://www.python.org/
http://www.hdfgroup.org

LIAM 2 User Guide, Release 0.6.0rc1

on to manage their data is not dependent upon a proprietary format and binary-only software that a
company may dramatically increase the price of, or decide to stop supporting altogether.

This allows us to handle important data sets.

8.2.3 YAML

The definition of the data and the model is done in the YAML-language (http://www.yaml.org).
YAML: YAML Ain’t Markup Language

What It Is: YAML is a human friendly data serialization standard for all programming languages.

8.3 Change log

8.3.1 Version 0.6 rci

Released on 2013-02-27.

New features:

* globals handling has been vastly improved:
— multiple tables: one can now define several tables in globals and not only the “periodic” table.

These should be imported in the import file and declared in the simulation file in the exact same way
that periodic globals are.

Their usage within a simulation is a bit different though: whereas periodic global variables can be used
without prefixing, others globals need to be prefixed with the name of their table. For example, if one
has declared a global table named “othertable’:

othertable:
fields:
— INTFIELD: int
- FLOATFIELD: float

its fields can be used like this:

my_variable: othertable.INTFIELD x 10

These other global tables need not contain a PERIOD column. When using such a table, LIAM?2 will
not automatically subtract the “base period” from the index, which means that to access a particular
row, you have to use its row index (0 based).

— n-dimensional globals: in addition to tables, globals can now be n-dimensional arrays. The file format
for those should be the same than alignment files. They should be declared like this:

MYARRAY: {type: float}

— globals can now be used in all situations instead of only in simple expressions and only for the
“current” period. Namely, it makes globals available in: link functions, temporal functions (lag,
value_for_period, ...), matching(), new() and in (all the different flavours of) the interactive console.

* alignment has been vastly improved:

— align_abs is a new function with the same arguments than align which can be used to align to absolute
numbers per category, instead of proportions. Combined with other improvements in this release, this
allows maximum flexibility for computing alignment targets on the fly (see below).

8.3. Change log 43

http://www.yaml.org

LIAM 2 User Guide, Release 0.6.0rc1

— align on a linked entity (a.k.a immigration): additionally to the arguments of align, align_abs has also

an optional “link” argument, which makes it work on the linked entities. The link argument must a
one2many link. For example, it can be used to take as many household as necessary trying to get
as close as possible to a particular distribution of persons. When the link argument is in effect, the
function uses the “Chenard” algorithm.

In this form, align_abs also supports two extra arguments:

+ secondary_axis: name of an axis which will influence rel_need when the subtotal for that axis is
exceeded. See total_by_sex in Chenard. secondary_axis must be one of the alignment columns.

errors: if set to ‘carry’, the error for a period (difference between the number of individuals
aligned and the target for each category) is stored and added to the target for the next period.

renamed the “probabilities” argument of align to “proportions”

the “proportions” argument of align() is now much more versatile, as all the following are now ac-
cepted:

% a single scalar, for aligning with a constant proportion.

+ a list of scalars, for aligning with constant proportions per category. (this used to be the only
supported format for this argument)

an expression returning a single scalar.

% an expression returning an n-dimensional array. expressions and possible_values will be retrieved
from that array, so you can simply use:

align (score, array_expr)

a list of expressions returning scalars [exprl, expr2].

* a string (in which case, it is treated as a filename). The “fname” argument is still provided for
backward compatibility.

— added an optional “frac_need” argument to align() to control how “fractional needs” are handled. It

can take any of three values: “uniform” (default), “cutoff” or “round”.

+ “uniform” draws a random number (u) from an uniform distribution and adds one individual if u
< fractional_need. “uniform” is the default behavior.

% “round” simply rounds needs to the nearest integer. In other words, one individual is added for a
category if the fractional need for that category is >= 0.5.

* “cutoff” tries to match the total need as closely as possible (at the expense of a slight loss of
precision for individual categories) by searching for the “cutoff point” that yields:

count (frac_need >= cutoff) == sum(frac_need)

— changed the order of align() arguments: proportions is now the second argument, instead of filter,

which means you can omit the “fname” or “proportions” keywords and write something like:

align(score, 'my_csv_file.csv’)

made align() (and by extension logit_regr) always return False for individuals outside the filter, instead
of trying to modifying the target variable only where the filter is True. That feature seemed like a good
idea on paper but had a very confusing side-effect: the result was different when it was stored in an
existing variable than in a new temporary variable.

it is no longer possible to use expressions in alignment files. If you need to align on an expression
(instead of a simple variable), you should specify the expression in the alignment function. eg:

align (0.0, fname="al_p_dead.csv’, expressions=[gender, age + 1])

* the result of a groupby can be used in expressions. This can be used, for example, to compute alignment
targets on the fly.

44

Chapter 8. Appendix

LIAM 2 User Guide, Release 0.6.0rc1

¢ added skip_na (defaults to True) argument to all aggregate functions.
* macros can now be used in the interactive console.
* added “globals” command in the interactive console to list the available globals.

¢ added qshow() command to show an expression “textual form” in addition to its value. Example:

gshow (grpavg (age))

will display:

grpavg (age) : 38.5277057298

* added optional “pvalues” argument to groupby() to manually provide the “axis” values to compute the
expression on, instead of having groupby compute the combination of all the unique values present in the
dataset for each column.

Miscellaneous improvements for users:

¢ added a “known issues” section to the documentation.
* grpmin and grpmax ignore nans (missing values) by default like other aggregate functions.

» made the operator precedence for “and”, “or” and “not” more sensible, which means that, for example:

age > 10 and age < 20

is now equivalent to:

(age > 10) and (age < 20)

instead of raising an error.
* manyZ2one links are now ~30% faster for large datasets.
* allow period in any dimension in alignment files, not only in the last one.

* disabled all warnings for x/0 and 0/0. This is not an ideal situation, but it is still an improvement because
they appeared in LIAM?2 code and not in user code and as such confused users more than anything.

¢ the “num_periods” argument of lag: lag(age, num_periods) can now be a scalar expression (it must have
the same value for all individuals).

 changed output format of groupby to match input format for alignments.
¢ added Warning in grpgini when all values (for the filter) are zeros.

* when an unrecoverable error happens, save the technical error log to the output directory (for run and explore
commands) instead of the directory from where liam2 was run and display on the console where the file has
been saved.

* better error message when an input file has inconsistent row lengths.
* better error message when using a one2many function in a groupby expression.

* added many tests, fixed a few existing ones and generally greatly improved our test suite.

Miscellaneous improvements for developers:

* python tracebacks can be re-activated by setting the DEBUG environment variable to True.
¢ added a script to automate much of the release process.

* added source files for creating liam2 bundle (ie add our custom version of notepad++ to the source distribu-
tion).

updated INSTALL file, and include sections on how to build the documentation and the C extensions.

8.3. Change log 45

LIAM 2 User Guide, Release 0.6.0rc1

Fixes:

* fixed “transposed” option on import. The number of lines to copy was computed on the untransposed data
which meant too few data points were copied if number columns was greater than the number of lines and
it crashed if it was smaller.

* fixed groupby with both filter and expr arguments.

e fixed new(number=...).

* fixed groupby(expr=scalar).

e fixed sumlink(link, scalar).

* fixed non-aligned regressions with a filter (it was ignored).

* fixed the editor shortcuts (to launch liam2) to work when the directory containing the model contains spaces.
* fixed handling of comments in the first cell of a row in alignments files (the entire row is ignored now).

* fixed “textual form” of choice expressions when bins or choices are dynamic.

¢ fixed using numpy 1.7

Experimental new features:

 implemented optional periodicity for simulation processes.

8.3.2 Version 0.5.1

Released on 2012-11-28.

Miscellaneous improvements:
« if there is only one entity defined in a model (like in demoO1.yml) and the interactive console is launched,
start directly in that entity, instead of requiring the user to set it manually.
* improved introduction comments in demo models.
* display whether C extensions are used or not in —versions.
¢ use default_entity in demos (from demo03 onward).
* do not display python version in normal execution but only in —versions.

¢ use cx_freeze instead of py2exe to build executables for Windows so that we can use the same script to build
executables across platforms and tweaked further our build script to minimise the executable size.

* compressed as many files as possible in the 32 bit Windows bundle with UPX to make the archive yet
smaller (UPX does not support 64 bit executables yet).

¢ improved our build system to automate much of the release process.

Fixes:

* fixed the “explore” command.
« fixed integer fields on 64 bit platforms other than Windows.
* fixed demo06: WEMRA is an int now.

¢ fixed demo01 introduction comment (bad file name).

46 Chapter 8. Appendix

LIAM 2 User Guide, Release 0.6.0rc1

8.3.3 Version 0.5

Released on 2012-10-25.

New features:

* added a way to import several files for the same entity. A few comments are in order:

— Each file can have different data points. eg if you have historical data for some fields data going back
to 1950 for some individuals, and other fields going back to only 2000, the import mechanism will
merge those data sets.

— It can also optionally fill missing data points. Currently it only supports filling with the “previous
value” (the value the individual had (if any) for that field in a previous period). In the future, we will
add more ways to fill those by interpolating existing data. Note that currently only data points which
are entirely missing are filled, not those which are set to the special value corresponding to “missing”
for the field type (i.e. False for booleans, -1 for integers and “nan” for floats). This will probably
change in the future.

— As a consequence of this new feature, it is now possible to import liam1 files using the “normal”
import file syntax.

added an optional “default_entity” key to the “simulation” block of simulation files, so that the interactive
console starts directly in that entity.

added function to compute the Nth percentile: grppercentile(expr, percent[, filter]).

implemented an optional filter argument for many functions. The behaviour is different depending on the
kind of function:

— for functions that change an existing variable (clip() and round()), the value for filtered individuals is
not modified.

— for functions which create a new variable (uniform(), normal() and randint()), the value for filtered
individuals is the missing value corresponding with the type of the column (-1 for randint(), nan for
uniform() and normal()).

— for aggregate functions (grpmin(), grpmax(), grpstd(), grpmedian() and grppercentile()), the aggregate
is computed over the individuals who satisfy the filter.

added new functions for testing: assertTrue and assertEqual:
— assertTrue(expr) evaluates its expression argument and check that it is True.

— assertEqual(exprl, expr2) evaluates its two expressions and check that they are equal.

The behaviour when an assertion fails is configurable through the “assertions” option in the “simulation”
block. This option can take three values:

— “raise”: interrupt the simulation (this is the default).
— “warn”: display a warning message.

— “skip”: do not run the assertion at all.

added commands to the console:
— entities: prints the list of available entities.

— periods: prints the list of available periods for the current entity.

added new command line arguments to override paths specified in the simulation file:
— —input-path: override the input path
— —input-file: override the input file

— —output-path: override the output path

8.3.

Change log 47

LIAM 2 User Guide, Release 0.6.0rc1

— —output-file: override the output file

* added —versions command line argument to display versions of all the libraries used.

Miscellaneous improvements:

* performance optimisations:

— fields which are used in lag expressions are cached (stored in memory) to avoid fetching them from
disk. This considerably speeds up lag expressions at the expense of a bit more memory used.

— implemented a few internal functions in Cython to get C-level performance. This considerably speeds
up alignment and groupby expressions, especially when the number of “alignment categories” (the
number of possible combinations of values for the variables used to partition) is high. The down
side is that if someone wants to recreate liam?2 binaries from the source code and benefit from this
optimisation (there is a pure-python fallback), he needs to have cython and a C compiler installed.

— other minor optimisations to groupby and alignments with take or leave filters.

slightly sped up initial data loading for very large datasets with a lot of historical data.

* choices() arguments (options and probabilities) now accept expressions (ie. they can be computed at run
time).

 improved the interactive console:
— made the interactive console start in the last simulated period by default.
— changed the behaviour of the “entity” command without argument to print the current entity.
— the “period” command can now be called without argument to print the current period.

¢ added more explicit checks for bad input:

check for duplicate headers in alignment files.

check all arguments to groupby() are valid instead of only the first one.

check for invalid keyword arguments to dump().

check for invalid keyword arguments to csv().

check the type of arguments to choice().

validate globals at load time to make sure the declared globals are actually present in the dataset.
* disallow strings for the score expression in the matching() function.

* improved the test coverage: There is still a long way for full test coverage, but the changes in this version is
already a first step in the right direction:

— automated many tests by using the new assertions functions.
— added more tests.

* only copy declared globals to the output file, and do not create a “globals” node at all if there is no declared
global.

* manually close input and output files when an error happens during initialisation, so that the user only sees
the real error message.

* globals can be entirely missing from the input file if they are not used in the simulation file.

* made the usual code clean-ups.

48 Chapter 8. Appendix

LIAM 2 User Guide, Release 0.6.0rc1

Fixes:

fixed typo in the code outputting durations (‘“hourss” instead of “hours”).
fixed a bug which prevented to define constants without quoting them in some cases.
fixed a crash when all groups were empty in a groupby(xxx, expr=grpcount(), percent=True).

fixed aggregate functions (grpmin, grpmax, grpstd, grpmedian and grppercentile) to accept a scalar as argu-
ment (even though it is not very useful to do that).

fixed a bug which prevented to use a simulation output file as input in some cases.

8.3.4 Version 0.4.1

Released on 2011-12-02.

Miscellaneous improvements:

validate both import and simulation files, i.e. detect bad structure and invalid and missing keywords.

improved error messages (both during import and the simulation), by stripping any information that is not
useful to the user. For some messages, we only have a line number and column left, this is not ideal but
should be better than before. The technical details are written to a file (error.log) instead.

improved “incoherent alignment data” error message when loading an alignment file by changing the word-
ing and adding the path of the file with the error.

reorganised bundle files so that there is no confusion between directories for Notepad++ and those of liam?2.
tweaked Notepad++ configuration:
— added explore command as F7

— removed more unnecessary features.

Fixes:

disallowed using one2many links like many2one (it was never intended this way and produced wrong re-
sults).

fixed groupby with a scalar expression (it does not make much sense, but it is better to return the result than
to fail).

re-enabled the code to show the expressions containing errors where possible (in addition to the error mes-
sage). This was accidentally removed in a previous version.

fixed usage to include the ‘explore’ command.

8.3.5 Version 0.4

Released on 2011-11-25.

New features:

added grpgini function.
added grpmedian function.

implemented filter argument in grpsum().

8.3. Change log 49

LIAM 2 User Guide, Release 0.6.0rc1

» implemented N-dimensional alignment (alignment can be done on more than two variables/dimensions in
the same file).

* added keyword arguments to csv():

— ‘fname’ to allow defining the exact name of the csv file.

— ‘mode’ to allow appending to a csv file instead of overwriting it.
» reworked csv() function to support several arguments, like show. It also supports non-table arguments.
* added ‘skip_shows’ simulation option, to make all show() functions do nothing.
* allowed expressions in addition to variable names in alignment files.
¢ added keyword arguments to dump():

— ‘missing’ to convert nans into the given value.

— ‘header’ to determine whether column names should be in the dump or not.
* improved import functionality:

— compression is now configurable.

— any csv file can be transposed, not just globals.

— globals fields can be selected, renamed and inverted like in normal entities.

* added “explore” command to the main executable, to launch the interactive console on a completed simula-
tion without re-simulating it.

Miscellaneous improvements:

* expressions do not need to be quoted anymore.

* reverted init to old semantic: it happens in “start_period - 17, so that lag(variable_set_in_init) works even
for the first period.

* purge all local variables after each process to lower memory usage.
¢ allowed the result of new() to not be stored in a variable.
* allowed using temporary variables in matching() function.
* using a string for matching expressions is deprecated.
¢ added a tolerance of 1e-6 to the sum of choice’s probabilities to be equal 1.0
¢ added explicit message about alignment over and underflows.
* nicer display for small (< 5ms) and large (>= 1 hour) timings.
 improved error message on missing parenthesis around operands of boolean operators.
 improved error message on duplicate fields.
» improved error message when a variable which is not computed yet is used.
* added more information to the console log:
— number of individuals at the start and end of each period.
— more stats at the end of the simulation.

¢ excluded unused components in the executable to make it smaller.

50 Chapter 8. Appendix

LIAM 2 User Guide, Release 0.6.0rc1

Fixes:

* fixed logit_regr(align=float).

* fixed grpavg(bool, filter=cond).

* fixed groupby(a, b, ¢, expr=grpsum(d), percent=True).

* fixed having several grpavg with a filter argument in the same expression.

* fixed calling the main executable without argument (simply display usage).

* fixed dump with (some kind of) aggregate values in combination with a filter.

« fixed void data source.

8.3.6 Version 0.3

Released on 2011-06-29.

New features:

* added ability to import csv files directly with the main executable.

Miscellaneous improvements:

» made periodic globals optional.

» improved a few sections of the documentation.
Fixes:

* fixed non-assignment “actions” in interactive console (csv, remove, ...).

* fixed error_var argument to cont_regr, clip_regr and log_regr.

8.3.7 Version 0.2.1

Released on 2011-06-20.

Miscellaneous improvements:

* simplified and cleaned up the demonstration models.
* improved the error message when a link points to an unknown entity.

* the evaluator creates fewer internal temporary variables in some cases.

Fixes:
* added log and exp to the list of available functions (they were already implemented but not usable because
of that).

* fixed log_regr, cont_regr and clip_regr which were comparing their result with 0.5 (like logit_regr when
there is no alignment).

* fixed new() function, which created individuals correctly but in some cases returned values which did not
correspond to the ids of the newly created individuals, due to a bug in numpy.

8.3. Change log 51

LIAM 2 User Guide, Release 0.6.0rc1

8.3.8 Version 0.2

Released on 2011-06-07.

New features:

added support for retrospective simulation (ie simulating periods for which we already have some data): at
the start of each simulated period, if there is any data in the input file for that period, it is “merged” with the
result of the last simulated period. If there is any conflict, the data in the input file has priority.

added “clone” function which creates new individuals by copying all fields from their “origin” individuals,
except for the fields which are given a value manually.

added breakpoint function, which launches the interactive console during a simulation. Two more console
commands are available in that mode:

— “s(tep)” to execute the next process
— “r(esume)” to resume normal execution
The breakpoint function takes an optional period argument so that it triggers only for that specific period.

added “tsum” function, which sums an expression over the whole lifetime of individuals. It returns an
integer when summing integer or boolean expressions, and a float for float expressions.

implemented using the value of a periodic global at a specific period. That period can be either a constant
(eg “MINR[2005]) or an expression (eg “MINR[period - 10]” or “MINR[year_of_birth + 20]”)

added “trunc” function which takes a float expression and returns an int (dropping everything after the
decimal point)

Miscellaneous improvements:

made integer division (int / int) return floats. eg 1/2 = 0.5 instead of 0.

processes which do not return any value (csv and show) do not need to be named anymore when they are
inside of a procedure.

the array used to run the first period is constructed by merging the individuals present in all previous periods.

print timing for sub-processes in procedures. This is quite verbose but makes debugging performance
problems/regressions easier.

made error messages more understandable in some cases.

manually flush the “console” output every time we write to it, not only within the interactive console, as
some environments (namely when using the notepad++ bundle) do not flush the buffer themselves.

disable compression of the output/simulation file, as it hurts performance quite a bit (the simulation time
can be increased by more than 60%). Previously, it was using the same compression settings as the input
file.

allowed align() to work on a constant. eg:

align (0.0, fname='al_p_dead_m.csv’)

made the “tavg” function work with boolean and float expressions in addition to integer expressions

allowed links to be used in expression given in the “new” function to initialise the fields of the new individ-
uals.

using “__parent__” in the new() function is no longer necessary.
made the “init” section optional (it was never intended to be mandatory).

added progress bar for copying table.

52

Chapter 8. Appendix

LIAM 2 User Guide, Release 0.6.0rc1

* optimised some parts for speed, making the whole simulation roughly as fast as 0.1 even though more work
is done.

Fixes:

* fixed “tavg” function:
— the result was wrong because the number of values (used in the division) was one less than it should.

— it yielded “random” values when some individuals were present in a past period, but not in the current
period.

* fixed “duration” function:
— it crashed when a past period contained no individuals.

— ityielded “random” values when some individuals were present in a past period, but not in the current
period.

* fixed “many2one” links returning seemingly random values instead of “missing” when they were pointing
to an individual which was not present anymore (usually because the individual was dead).

* fixed min/max functions.
* fields which are not given an explicit value in new() are initialised to missing, instead of 0.

¢ the result of the new() function (which returns the id of the newly created individuals) is now -1 (instead of
0) for parents which are not in the filter.

* fixed some expressions crashing when used within a lag.

* fixed the progress bar to display correctly even when there are only very few iterations.

8.3.9 Version 0.1

First semi-public release, released on 2011-02-24.

8.3. Change log 53

LIAM 2 User Guide, Release 0.6.0rc1

54

Chapter 8. Appendix

aggregate functions, 14
align, 19

alignment, 17
assertEqual, 28
assertions, 28
assertTrue, 28

avglink, 15

breakpoint, 28
bundle, 2

choice, 16
clone, 22
countlink, 15
csv, 24

debugging, 27
dump, 26
duration, 15

expressions, 13

groupby, 26
grpavg, 14
grpcount, 14
grpgini, 14
grpmax, 14
grpmedian, 14
grppercentile, 14
grpstd, 14
grpsum, 14

hdf5, 42

import, 31
interactive console, 27

known issues, 41

lag, 15

leave, 19

lifecycle functions, 20
links, 28

logit, 17

logit_regr, 17
logit_score, 18

many2one, 29

INDEX

matching, 22
mathematical functions, 14
maxlink, 15

minlink, 15

new, 21
normal, 16
notepad++, 2

one2many, 30

processes, 10
python, 42

randint, 16
random, 16
remove, 22

show, 24
simple expressions, 13
sumlink, 15

take, 19
tavg, 15
temporal functions, 15
tsum, 15

uniform, 16
value_for_period, 15

yaml, 42

55

	Introduction
	About LIAM2
	About this guide
	Microsimulation
	Credits

	Environment
	LIAM 2 bundle
	Getting Started
	Using your own data

	Model Definition
	globals
	entities
	simulation

	Processes
	Assignments
	Temporary variables
	Actions
	Procedures
	Expressions
	Output
	Debugging and the interactive console

	Links
	many2one
	one2many

	Importing data
	data files
	description file
	importing the data

	Indices and tables
	Appendix
	Known issues
	Technical choices
	Change log

	Index

